
Chronotrack Socket Protocol 1 – rev 7 2009-12-18

Revision History

date revision details

2009-12-18 7 added connection-id init line for delayed newlocation events

2009-09-03 6 enhancement to protocol for aiding in resume stream operations

2009-03-12 5 clarifications and textual updates

2008-10-16 4 added time-format option

2008-07-25 3 minor additions

2008-04-23 2 added some details on command replies 
updated the start command
updated explanation on newlocation events

2008-04-15 1 added pushmode-ack functionality (by request of Alan Jones)

2008-04-04 0 initial document

Introduction

The following document describes Chronotrack Socket Protocol 1 (from now on referred to as CTP01). This 
protocol can be implemented by Race Scoring software, Text Messaging Services and other Event software to 
interface with Chronotrack System Software through TCP socket connections. Currently the Chronotrack 
Software will act as a TCP client and 3rd party software needs to implement a TCP Socket Server.

The protocol is human readable making it easy to implement and/or debug. All commands and responses will 
be terminated by Carriage Return + Line Feed (\r\n) and uses tilde (~) as field separator. 

The protocol allows for different methods of dealing with data, making it suitable for a variety of different 
programs. By sending initialization requests in the greeting phase it is possible to select operating mode and 
additional features / commands. This way the Chronotrack software knows how to communicate with the other 
software and not all features of the protocol have to be implemented.

In the following few pages two stream modes are distinguished: pull and push mode. You do not need to 
implement both pull and push mode, implement the mode that makes the most sense for how your software is 
developed and deals with data streams.

If your software will be connecting with Chronotrack client software over an unsecured network like the internet 
it might be a good idea to implement authentication as described below. However, most results scoring 
software will connect with Chronotrack clients on local networks controlled by the timer and often both software 
packages even run on the same computer. In these cases authentication does not seem very necessary. It is 
again up to the developer to decide to implement authentication or not.

ChronoTrack Software defaults to TCP Port 61611 for the CTP01 protocol. It is possible to use another listen 
port but will be inconvenient to timers expecting default settings. Only divert from this port if absolutely 
necessary (example: other services already using this port).

For more detailed information on how tag observations can be send over the wire, please consult the text-file 
format documentation.

Author: Bas van Beek page: 1-8



Chronotrack Socket Protocol 1 – rev 7 2009-12-18

Connection Initiation

Upon connection the Chronotrack client will send a greeting message to the server :

Syntax:
<program-name>~<program-version>~<protocol-version>

Example:
TripleC~0.1.0~CTP01

Comment:
This protocol version is identified by CTP01

The Server must respond with:

Syntax:
<program-name>~<program-version>~<number of request lines>

Examples:
RunScore~Version 6.5 Level 2007.09.26~2
Race Director~Version 2008 rev 3~0

Comment:
If <number of request lines> = 0 all default values are assumed as described in the table below

The <number of request lines> informs the Chronotrack System client that it can expect a couple of initialization 
requests in the form of:

Syntax:
<request-1>=<value-1>
..
<request-n>=<value-n>

Examples:
location=single
guntimes=true

These must be sent immediately after the Server Response line. Currently available request options:

request option values default comment

location single, 
multi

multi send tag observation data from a single location or from 
multiple locations

guntimes true, false false send gun-time events if available (affects push mode only)

newlocations true, false false send new location events if available (affects push mode only)

authentication none
plaintext
hmac-sha1
hmac-md5
seed-sha1
seed-md5

none specify authentication type

authentication-seed <string> seed used for hmac or seeded-hash based authentication

stream-mode push, pull pull put client in push mode (automatic sending of data) or pull 
mode (request data from client) 

tagevent-format CT??_?? CT01_33 For available values see text-file format documentation

pushmode-ack true, false false send replies on push mode start and stop commands

Author: Bas van Beek page: 2-8



Chronotrack Socket Protocol 1 – rev 7 2009-12-18

request option values default comment

time-format normal
iso
unix
msecs

normal time formatting options, only available with variable-width 
formatting (see tagevent-format)

Examples: October 16th 2008, 2:02:15pm and 31 hundreds.
normal: 14:02:15.31
iso: 2008-10-16T14:02:15.31
msecs: 43455310
unix: 1224165735.31

connection-id true, false false if set to true and newlocations is set to true, the newlocation 
events will be delayed until the server has requested the 
connectionid using the getconnectionid command. This 
eliminates the need for the server to buffer these events.

Authentication

If your software package is running as a service on the internet or another unsecured network you can require 
the client to use authentication by setting the “authentication” initialization request during the initial connection 
phase. If authentication is requested through the server greeting, the client sends an authentication request to 
the server. The authentication string reported back will use the authentication-seed provided by the server to 
calculate the correct hash (when using hmac or seed authentication). The server should generate a different 
seed for each new connection to the server.

Syntax:
authorize~<user-id>~<authentication-string>

Example:
authorize~TimersRus~b617318655057264e28bc0b6fb378c8ef146be00

If  plaintext authentication is used the <authentication-string> is the password itself, if an HMAC (hmac-sha1 or 
hmac-md5) is used it will be the digest where the HMAC message is the <authentication-seed> and the shared 
secret is the client password. 
If a seeded hash is used (seed-sha1 or seed-md5) the <authentication-string> is calculated by hashing the 
following string:  <authentication-seed><password>
By comparing the client digest with your local generated digest you can check the authenticity of the connected 
client. HMAC authentication “hmac-sha1” is the “safest” method for authentication.

If authorization fails the server should send an error message and disconnect the TCP socket

Syntaxes:
ack~authorize
err~authorize[~<optional error message>]

Examples:
ack~authorize
err~authorize~invalid password
err~authorize~your account has been suspended

Note: If you want to use a hashing method (hmac-sha1, hmac-md5, seed-sha1, seed-md5), your server must 
create it's own digest by retrieving the requested password for the specified <client-id> from it's database and 
compare it's own digest against the digest from the client. This means the password cannot be saved in the 
database as a hash since you will need to use the real password to calculate the local digest. Either save 
passwords plaintext in the database or use a 2-way encryption method like Rijndael or TripleDes to store 
encrypted passwords.

Author: Bas van Beek page: 3-8



Chronotrack Socket Protocol 1 – rev 7 2009-12-18

Post authentication

When authentication is successful or no authentication is required, the client will start listening to commands. If a 
command or it's parameters is invalid, the client will throw an error reply.

Syntax:
err~<command>~<error message>

Examples:
err~~unknown command
err~getdata~invalid location 

Author: Bas van Beek page: 4-8



Chronotrack Socket Protocol 1 – rev 7 2009-12-18

Generic Commands

The following commands can be issued regardless of the stream mode.

Receive event name, event id, event description from active Chronotrack System (if available):

Syntax:
geteventinfo

Response Syntax:
ack~geteventinfo~<event name>~<event id>~<event description>

Example:
S: geteventinfo
C: ack~geteventinfo~LA08~12~Los Angeles Marathon 2008

Check if connection to Chronotrack client is still alive:

Syntax:
ping

Response Syntax:
ack~ping

Retrieve a list of locations that the Chronotrack client has available to the server through this socket link:

Syntax:
getlocations

Response Syntax:
ack~getlocations~<location 1>[~<location ..>[~<location n>]]

Example:
S: getlocations
C: ack~getlocations~start~10k~half~30k~finish

Retrieve the unique connection id from a client connection. This can be used to identify if the connection is a 
new connection or a re-established one. Together with the last received sequence numbers per location for a 
specific connection, the server will be able to resume the stream(s) at the correct offset:

Syntax:
getconnectionid

Response Syntax:
ack~getconnectionid~<connection id>

Example:
S: getconnectionid
C: ack~getconnectionid~b617318655057264e28bc0b6fb378c8ef146be00

Comment:
this function is only available on SimpleClient version 0.4.0+.

Author: Bas van Beek page: 5-8



Chronotrack Socket Protocol 1 – rev 7 2009-12-18

Push Mode Commands

In push mode tag observations (and if requested gun-times) are sent as soon as they become available to the 
Chronotrack client and the server has started the stream for the location(s). If necessary the server can instruct 
the Chronotrack client to stop sending data by issuing a stop command.
When using the getconnectionid command after initial connection and authorization, it is possible to keep a 
status list at the server on sequence numbers per available location for that specific connection. In case a 
connection drops and is reestablished it is possible to correctly identify the location sequence numbers to use 
for resuming previous streams. Do note that in between new locations might have become available to the 
client. These new locations should be started from the beginning.

Start streaming tag observations (and gun-times):

Syntax:
start[~<location name>[~<location sequence number>]]

Examples:
start
start~10k
start~finish~4530

Comment:
If <location name> is omitted, start all locations available at that time (new locations will never 
automatically start). If <location sequence number> is omitted, start from the first observation. 

Stop streaming tag observations (and gun-times):

Syntax:
stop[~<location name>]

Example:
stop
stop~start
stop~10k

Comment:
if <location name> is omitted, all locations connected through this link will be stopped.

When pushmode-ack=true, the start and stop commands will issue replies:

Syntax:
ack~start<~location name>
err~stop~error message details

When streams are active the following type of messages can be expected:

Tag Observation message:

Syntax:
Depends on tagevent-format setting, for details consult the text-file format documentation.

Example:
CT01_33~1~start~9478~08:29:10.29~0~0F2A38~1

Author: Bas van Beek page: 6-8



Chronotrack Socket Protocol 1 – rev 7 2009-12-18

Gun-time message:

Syntax:
Depends on tagevent-format setting, for details consult the text-file format documentation. 

Example:
CT01_33~4~start~guntime~07:45:01.01~0~DF239A~0

Comment:
The syntax of a guntime message is exactly the same as for a tag observation. Instead of the 
tagcode the string “guntime” is placed in the tagcode field and the reader id field contains the 
controller id. Gator number and lap count are always 0.

If the Chronotrack client receives a new timing location and the protocol is in multi-location mode and 
newlocations are allowed to be send, the server will be informed of newly available locations. This will be done 
by a message similar to the gun-time message. If the client has locations available and the server is connected 
later on, the server can expect newlocation messages to arrive after the authentication phase or after the 
greeting phase if authentication was not required.

New location available message:

Syntax:
Depends on tagevent-format setting, for details consult the text-file format documentation.

Example:
CT01_33~2038~30k~newlocation~09:15:21.00~0~ED932A~0

Comment:
The syntax of a new location message is the same as for a tag observation. The location field 
contains the label of the new location. Instead of the tagcode the string “newlocation” is placed 
in the tagcode field and the reader id field contains the controller id. The time field shows the 
timestamp of when the connection with the Chronotrack client was achieved. Gator number 
and lap count are always 0.

If you have not allowed for new location event messages but are in multi location mode, you will need to 
regularly request a locations listing through the “getlocations” command, to check if a new location has become 
available. 

Note on line termination and field separators:
Even though the protocol itself uses ~ (tilde) as field separator and <Cr><Lf> as line terminator the tag 
observation data stream can use other characters as defined by the tagevent-format option. Default setting is 
CT01_33 which means the tag observations use the same characters for field separation and line termination. 
Be careful when altering line termination as it complicates parsing the data stream when both commands and 
tag observations are sent.

Author: Bas van Beek page: 7-8



Chronotrack Socket Protocol 1 – rev 7 2009-12-18

Pull mode Commands

In pull mode tag observations must be requested by the server, which can be done with the getdata command:

Syntax:
getdata~<maxitems>[~optional location filter[~optional sequence number]]

Examples:
getdata~50
getdata~50~finish
getdata~50~finish~209

Comment:
The optional location filter can be useful when multiple location streams are connected to this 
TCP socket (location=multi). If a certain location has priority or processing of single location 
data / data-burst is preferred the filter can be set. If an optional location filter is set, it is also 
possible to request data starting from a specific sequence number. This is useful in case a 
connection was dropped but you do not wish to start again from the first observation for that 
location. To identify that a previously dropped connection has indeed reconnected (thus it's not 
a new connection) use the getconnectionid command described earlier.

The Chronotrack client will send available tag observations to the server limited by <maxitems>. The remaining 
tag observations must be requested again by issuing another getdata command. If less than maxitems is 
available this will be reflected by <itemcount> and the amount of following tag observation lines. The client 
sends tag observations as follows:

Response Syntax:
ack~getdata~<itemcount>
<tag observation line as described in CSV format and set to tagevent-format>

Example #1:
ack~getdata~3
CT01_33~1~start~guntime~07:45:01.01~0~DF239A~0
CT01_33~2~finish~12~08:38:58.97~0~0FA22E~4
CT01_33~3~finish~2948~08:39:01.62~0~04BE82~2

Example #2:
ack~getdata~0

Author: Bas van Beek page: 8-8


